effettivamente l'analisi modale e' un mero strumento per facilitarci i calcoli, e non dipende dalla elasticita' del sistema, in quanto in caso di sistema in fase plastica, si aggiorna la matrice di rigidezza con una sorta di iterazione al passo. Ad ogni modo aspetto altri commenti, la faccenda comincia a divenire parecchio interessante.
avevo gia fatto un sunto sulla questione
mi cito
n sintesi:
quando conduci il calcolo di una struttura col tuo programmino preferito, metti solo le dimensioni degli elementi, la geometria della struttura ed i moduli elastici dei materiali. Non dai nessuna informazione sul reale comportamento delle sezioni o sul quantitativo di acciaio presente. Quindi e' come se stessi considerando la struttura composta da elementi il cui comportamento e' infinitamente elastico.
Se a tale modello applichi uno ben determinato spettro, che indico con So, ottieni una risposta della struttura che possiamo semplificare, per comodita di esposizione, in una risposta in termini di azioni (per esempio in termini di momenti) ed una risposta in termini di spostamenti.
Sia "Mo" il massimo valore della risposta in termini di azioni e sia "do" il massimo spostamento della risposta in termini di spostamenti.
Bene, supponiamo adesso di essere in grado di riuscire a modellare la nostra struttura considerando le effettive leggi costitutive dei materiali e delle sezioni, che sappiamo non essere del tipo "infinitamente elastico", tenendo quindi conto delle sue risorse plastiche che seguono quelle elastiche. Applichiamo a questa struttura lo stesso spettro So e conduciamo l'analisi.
Noteremo che questa struttura cosi modellata ha una risposta in termini di sollecitazioni molto piu bassa che non quella ottenuta prima, mentre la risposta in termini di spostamento resta identica a quella di prima.
quindi avremo:
struttura considerata infinitamente elastica: sisma So, sollecitazioni Mo, spostamenti do
struttura considerata elasto plastica: sisma So, sollecitazioni M1, spostamenti do
con M1<Mo
Adesso ci chiediamo: come poter considerare questa diminuizione di sollecitazioni continuando ad usare il mio programma preferito che pero' non mi consente di tenere in conto della duttilità dei materiali?
Semplice: basta che utilizzi uno spettro S1<So tale che, conducendo la solita analisi di tipo infinitamente elastica, ottenga il livello M1.
Quindi trattasi allora di determinare di quanro abbattere So per portatlo ad Si affinche abbia come risultati M1.
Il rapporto, in maniera semplicistica, tra i due spettri S1 ed So e' detto appunto, fattore di struttura q.
quindi faremo una cosa del genere:
struttura considerata infinitamente elastica: sisma S1, sollecitazioni M1, spostamenti d1
Pero' cosi otterremo una risposta in termini di spostamenti "d1" che non e' la stessa di quella reale "do". Quindi come risolviamo questo problema?
Semplice, prendiamo gli spostamenti "d1" e li amplifichiamo di un fattore legato al precedente che ci riporti gli spostamenti a "do"